Extensions 1→N→G→Q→1 with N=C32 and Q=C4×S3

Direct product G=N×Q with N=C32 and Q=C4×S3
dρLabelID
S3×C3×C1272S3xC3xC12216,136

Semidirect products G=N:Q with N=C32 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C321(C4×S3) = C6.S32φ: C4×S3/C2D6 ⊆ Aut C32366C3^2:1(C4xS3)216,34
C322(C4×S3) = He3⋊(C2×C4)φ: C4×S3/C2D6 ⊆ Aut C32366-C3^2:2(C4xS3)216,36
C323(C4×S3) = C4×C32⋊C6φ: C4×S3/C4S3 ⊆ Aut C32366C3^2:3(C4xS3)216,50
C324(C4×S3) = C4×He3⋊C2φ: C4×S3/C4S3 ⊆ Aut C32363C3^2:4(C4xS3)216,67
C325(C4×S3) = S3×C32⋊C4φ: C4×S3/S3C4 ⊆ Aut C32128+C3^2:5(C4xS3)216,156
C326(C4×S3) = Dic3×C3⋊S3φ: C4×S3/C6C22 ⊆ Aut C3272C3^2:6(C4xS3)216,125
C327(C4×S3) = C338(C2×C4)φ: C4×S3/C6C22 ⊆ Aut C3236C3^2:7(C4xS3)216,126
C328(C4×S3) = C339(C2×C4)φ: C4×S3/C6C22 ⊆ Aut C32244C3^2:8(C4xS3)216,131
C329(C4×S3) = C3×C6.D6φ: C4×S3/Dic3C2 ⊆ Aut C32244C3^2:9(C4xS3)216,120
C3210(C4×S3) = C12×C3⋊S3φ: C4×S3/C12C2 ⊆ Aut C3272C3^2:10(C4xS3)216,141
C3211(C4×S3) = C4×C33⋊C2φ: C4×S3/C12C2 ⊆ Aut C32108C3^2:11(C4xS3)216,146
C3212(C4×S3) = C3×S3×Dic3φ: C4×S3/D6C2 ⊆ Aut C32244C3^2:12(C4xS3)216,119
C3213(C4×S3) = S3×C3⋊Dic3φ: C4×S3/D6C2 ⊆ Aut C3272C3^2:13(C4xS3)216,124

Non-split extensions G=N.Q with N=C32 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C32.(C4×S3) = C4×C9⋊C6φ: C4×S3/C4S3 ⊆ Aut C32366C3^2.(C4xS3)216,53
C32.2(C4×S3) = Dic3×D9φ: C4×S3/C6C22 ⊆ Aut C32724-C3^2.2(C4xS3)216,27
C32.3(C4×S3) = C18.D6φ: C4×S3/C6C22 ⊆ Aut C32364+C3^2.3(C4xS3)216,28
C32.4(C4×S3) = C12×D9φ: C4×S3/C12C2 ⊆ Aut C32722C3^2.4(C4xS3)216,45
C32.5(C4×S3) = C4×C9⋊S3φ: C4×S3/C12C2 ⊆ Aut C32108C3^2.5(C4xS3)216,64

׿
×
𝔽